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Vapor]Liquid Equilibrium Calculations by Constrained 
Free-Energy Minimization 1 

J. K. Drohm 2 and A. G. Schlijper 2 

A method is presented for approximate vapor/liquid equilibrium calculations 
using an equation of state. The method reduces the number of variables in the 
free-energy minimization problem by the introduction of suitably chosen 
additional constraints. It is based on a representation of a multicomponent fluid 
as a mixture of a small number of weakly polydisperse components. The 
approximation method can be used to accelerate sequences of vapor/liquid 
equilibrium calculations, such as are encountered in many engineering 
applications [plant design, hydrocarbon (oil/gas) reservoir simulation]. In 
realistic cases computing time has been reduced by up to 65 %. 

KEY WORDS: equation-of-state calculations; polydisperse fluid; vapor/liquid 
equilibrium; variational approximation. 

1. I N T R O D U C T I O N  

Analytic equations of state, especially cubic ones, are widely used in the oil 
industry. Vapor/liquid equilibrium (VLE) calculations with an equation of 
state (EOS) provide the most accurate and reliable method for predicting 
the phase behavior of reservoir fluids [1-3]. However, the accurate model- 
ing of a reservoir fluid system generally requires the use of many (20-30) 
components. Since in practical applications (e.g., reservoir simulation) a 
large number of consecutive VLE calculations often has to be performed, 
the large number of components leads to a large expenditure in computer 
time. Also, problems are frequently encountered with the convergence of 
the numerical algorithm used to solve the set of equations describing two- 
phase equilibrium. 
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In this paper we describe an approximation method for vapor/liquid 
equilibrium calculations with an equation of state. The VLE problem is 
equivalent to the problem of minimizing the Gibbs free energy. Our 
approximation method introduces additional constraints into this 
minimization problem, which leads to the formulation of an "approximate 
minimization problem" (AMP) with fewer independent variables than the 
exact minimization problem (EMP). The AMP may then be solved more 
quickly than the EMP; its solution provides an approximation to the exact 
equilibrium state. This approximate solution either may be accepted as the 
final answer or may be used as an initial estimate for a full Newton-  
Raphson iterative scheme for solving the EMP. Since generally the solution 
of the AMP is very close to the exact answer, this scheme will then con- 
verge quickly. 

In Section 2 the AMP is formulated and the general form of the con- 
straints is given, together with some heuristic motivation. In Section 3 it is 
shown that our approximation follows naturally if the fluid system is con- 
sidered as a mixture of weakly polydisperse components. In Section 4 we 
apply our approximation technique in accelerating sequences of VLE 
calculations. Examples of approximation results are compared with exact 
results, for a simple artificial fluid system and for a realistic reservoir fluid. 
Conclusions are formulated in Section 5. 

2. THE APPROXIMATE MINIMIZATION PROBLEM (AMP) 

In vapor/liquid equilibrium (VLE) calculations for an N-component 
fluid system at fixed pressure P and temperature T, the thermodynamic 
quantity of interest is the Gibbs free energy G of the system: 

a = 6 V ( { y i } )  (1) 

which is the sum of contributions G L from the liquid and G v from the 
vapor phase. Here x i and Yi, respectively, denote the number of moles of 
component i present in the liquid and vapor phases. The total amount of 
each component in the system is 

ze = xi + Yi (2) 

Hence, at fixed P, T, and composition {zi}, G may be regarded as a 
function of N independent variables; to be definite we shall take these to be 
the xi, i = 1 ..... N. The thermodynamic equilibrium state is determined from 
the condition that G be minimal. This constitutes a minimization problem 
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(EMP) in the N-dimensional space of the variables x~. The first-order con- 
ditions for this minimum lead to the well-known equations 

#iL  ____ I/iV, i = 1,..., N (3) 

where #~ denotes the chemical potential of the ith component. 
In this paper we take Eq. (3) as being equivalent to the EMP; the 

problem of distinguishing among the various sorts of extrema of G, 
stability problems, etc., is not addressed here [4]. 

We construct an approximation to the EMP as follows. Divide the N 
components of the fluid system into K groups; ies will symbolize that com- 
ponent i belongs to group s. Define "lumped variables" ~,, ~/,, ~,, for 
s = 1,..., K by 

++,=Z x,, r/+=E y], ++,=Zz+ (4) 
lea ias ies 

Next, define a set of additional parameters, "similarity parameters" 
[5], C~, for i =  1,..., N by 

y,/ s - 
C i - , ies (5) 

Note that the group number s is unambiguous for any component number 
i since each component belongs only to one group. Also note that for any 
group s 

~ z i C i = O  (6) 
i~s 

so only ( N - K )  of the similarity parameters are independent. From Eqs. (2), 
(4), and (5) we find 

(7) yi z,[  (++- 
- =  1 - c,  /J  

The approximation now introduced is based on the assumption that 
the similarity parameters Ci are constants, i.e., independent of P, T, and 
{zi}. In this case the Gibbs free energy G of the system may be regarded as 
a function of the K variables ~s and the problem of minimizing G by 
variation of the is is a K-dimensional problem. 
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The first-order conditions for the AMP are 

O~s/P,V,{z,},{q, \ Oqs )P,T,{z,},{Ci} 
The derivatives in Eq. (8) are analogous to the chemical potentials in 
Eq. (3) and may be called pseudo-chemical potentials or pseudopotentials; 
for these we use the notations/~s L, f ly.  The set of equations 

fis L= fis v, s = 1,.., K (9) 

will be taken as being equivalent to the AMP. 
The pseudopotentials are easily related to the chemical potentials: with 

the aid of Eq. (7), we find 

~s=E )~i~i (10) 
/es 

with 

Zir l  (2#s--#s]] Zi[ (2/7s ~-~s)] iss (11) 

A heuristic motivation for the approach described here is the 
following. 

Simplification of a complicated reservoir fluid description is 
traditionally accomplished by grouping components together and treating 
these groups each as one component, the so-called pseudocomponents 
[-6, 7]. Pseudocomponents are endowed with physical properties that are 
averages of the properties of the constituents. This pseudocomponent 
approximation is, in essence, based on the assumption that the com- 
position of a group or pseudocomponent is identical in both coexisting 
phases and is the same as the composition of the group in the total system. 
This is equivalent to the assumption, in our formulation, that all the 
similarity parameters are identically equal to zero, as may be observed 
immediately from Eq. (7). A first improvement on this assumption would 
be to take the Ci constant, equal to their values for a known two-phase 
equilibrium situation, which is the approximation we propose here. 

3. VAPOR/LIQUID EQUILIBRIUM IN A MIXTURE OF WEAKLY 
POLYDISPERSE COMPONENTS 

In this section we relate the approximation presented in Section 2 to 
the VLE problem for mixtures of polydisperse components [-8-12]. 
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Consider a mixture of K components, with mole fractions (s, 
s = 1 ..... K, and suppose that each component is polydisperse in nature. By 
this we mean that each component consists of a mixture of various 
"species"; we assume that these species can be labeled by a variable co that 
takes values in some label set ~2. O is supposed to be a measure space 
equipped with a suitably chosen a priori measure/2. For instance, s may 
be the set of real numbers R with the Lebesgue measure or the set of 
natural numbers N with the counting measure. The "internal composition" 
of each polydisperse component is then given by a density function Fs(~o) 
with 

f F~.(o)) d/2((.o) = 1 (12) 

In the context of an equation of state of the Van der Waals type, such 
as the EOS of Soave [13] or of Peng and Robinson [14], such a 
polydisperse component is characterized by two functions as(ca) and bs((~), 
which act as generalizations of the EOS constants ai and bi characteristic of 
a pure component [8, 15]. (This is assuming that there are no binary 
interaction coefficients.) The VLE problem for such a system then takes the 
following general form [ 1 5 ]  

log O. s gs(~~ = ~s(~O) (13) 
~ f~ (~ )  

X(sfs(~) + ~'r)s gs((~) : (~.Fs(CO) (14) 

Here (s is the mole fraction of component s in the liquid phase andfs(~o) is 
the density function describing its internal composition; k is the molar 
liquid fraction; and qs, gs(~o), and f are the corresponding quantities for 
the vapor phase. The function r is related to a difference of chemical 
potentials excluding contributions from the ideal mixing terms [10]. Its 
specific form depends on the EOS, but a general feature is that the depen- 
dence on s and o) is derived entirely from the dependence on as(co) and 
b~(~o) (cf. Ref. 15, Appendix II). 

At fixed P, T, ~s, and F~(~o), Eqs. (13) and (14) have to be solved for 
r fs(co), Y, fis, and gs((~), taking into account the normalization con- 

ditions: 

s s 

Let us now assume that each component in the mixture is only weakly 
polydisperse in nature, i.e., let 

a~(~)=a~~ b~(~o)=b~~ (16) 
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with es and 6s small parameters. If G = ~, = 0 for all s, then each component 
is monodisperse, (~s(O,)) is independent of co, and the mixture is equivalent 
to an ordinary mixture of K components. The VLE problem then has the 
solution 2 ~ 4, ~ I 7~ q o together with 

f~~ = Fs(CO); g,~ = Fs(co ) (17) 

We may now look for solutions of Eq. (13) as series expansions in es, 
c~ s. A straightforward calculation yields that if we take 

a,~ f Fs(CO)G(co)dll(o,)), bs~ f Fs(co)b,(~o)d#(co) (18) 

to first order the only effect of the polydispersity of the components is on 
their internal composition in the coexisting phases (cf. Ref. 10): 

f ~ ~ 0 fs(CO) = F,(co)' 1 - , " {<G(co) cS,fis(co ) + 0(~, 2) 

(19) 

g,(co)=g,(co)" 1 + ~ ,e,c~,(c~176 0b,JJ  + 0(e2) 

The derivatives that occur m these expressions are to be evaluated at 
es = g)~ = O. 

These first-order corrections to fs(co) and gs(co) generate second-order 
corrections to X, Y, ~,., and t/s. 

Given the expressions for f,(co) and g,(co) in Eq. (19) it is a natural 
progression to look for solutions of the polydisperse VLE problem with 

(20) 

with 

&bs (21) C'(~176176176 + 6sfl'(c~ ~?bs 
Fs(o)) 

and to determine 2, I 5, ~ ,  0, from the requirement that the (polydisperse) 
free energy should be a minimum. A detailed discussion of this 
approximation and its application will appear elsewhere [16]. 

For our present purpose (see Section 4) we introduce an additional 
simplification: in the expression for Cs(co) in Eq. (21) we neglect the depen- 
dence on P, T, {~,}, {q,} of the coefficients ~O,/Oas and ~9~,/Ob,; with this 
assumption C,(o)) is a f ixed  function that describes to first order the effect 
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of the polydisperse nature of the components in the mixture. Assuming that 
Cs(~O) is fixed, it may be calculated by means of the first equality of 
Eq. (21) from any known VLE situation. 

The relationship to our approximation in Section 2 is now obvious: a 
polydisperse component corresponds to a group of actual, pure com- 
ponents; if o) takes discrete values, Eq. (21) corresponds to Eq. (5) and 
Eq. (20) has its counterpart in Eq. (7). [Note that Eq. (7) is in terms of 
mole numbers rather than mole fractions.] Thus, our approximation may 
be motivated by taking the point of view that in a complex fluid mixture, 
such as a reservoir oil, it is possible to distinguish groups of components, 
each of which can adequately be described as one weakly polydisperse 
component. 

4. APPLICATION AND EXAMPLES 

4.1. Application 

We have applied the approximation method described in Section 2 as 
a means of accelerating sequences of VLE calculations. Such sequences are 
encountered, for instance, in numerical reservoir simulation, where the 
total number of VLE calculations may be of the order of 10 6. 

The problem, then, is to determine VLE at conditions P, T, {z,}, 
knowing the equilibrium results at another set of conditions (which we 
refer to as calibration conditions, referred to by means of a superscript o) 
pO, T o, {ziO}. Equation (3) may be solved for the new set of conditions by 
means of a Newton Raphson iterative scheme [17-20], but the success 
and efficiency of this method depend on the availability of good initial 
estimates. Such estimates are obtained by solving the approximate problem 
AMP [Eq. (9)] at P, T, {zi} first. 

From the known equilibrium data {xg}, {yi ~ at calibration con- 
ditions, ~.o, r/0, and ~o are calculated by Eq. (4), and Ci ~ by Eq. (5). 
Obviously, with Ci= Ci ~ at calibration conditions the AMP yields the 
exact VLE data; this is why we speak of calibration of the approximation. 

The problem of solving the AMP at the new conditions, knowing its 
solution at calibration conditions, is now completely analogous 
qualitatively to the original problem, but it differs quantitatively in that it 
entails only K instead of N variables. Consequently any algorithm that has 
been designed for sequential VLE calculations may be applied to the 
approximate calculation; it will perform faster since the problem has been 
reduced in size. 

From the values for ~s and t/s so obtained, values for the x i and Yi are 
found by means of Eq. (7), using Ci= Ci ~ These, then, may be used as 

840/7/2-13 
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initial estimates to solve the exact VLE problem. Alternatively, if the 
change in conditions is not too large, the approximation results may be 
accepted as the final answer, thus saving even more computing time. For 
this the following criterion is used: a complete VLE calculation is perfor- 
med and the approximation is recalibrated only if one of the following con- 
ditions is violated [-3 ]: 

I L - ~ ~  . . . .  s = l  ..... x 

JP- P~ ~ APmax (22) 

IT-/~l ~<~rmax 

As default values of the tolerances in Eq. (22) we use A~max=0.10, 
ZIPmax = 1000 kPa, and ATmax =20~ but the pressure tolerance in par- 
ticular may often be set at a much higher value. 

The procedure described above has been implemented in the algorithm 
for VLE calculations of Kao, which is described in detail elsewhere [-18 ]. 
The calculations discussed below were performed with this algorithm, using 
the equation of state of Soave, on a Univac 1106/2 computer. 

4.2. E x a m p l e s  

By way of illustration we present some results for two fluid systems. 
Fluid A (Table I) is an artificial nine-component system which is an 

obvious candidate for representation by three polydisperse components or 
groups. The approximation was calibrated at 1000 kPa and 300 K and 
approximation results at various conditions were compared with the exact 
VLE data. Figure 1 shows the deviation (approximation r e su l t - exac t  

Table I. Fluid A Composition and Component Grouping 

Group Component Mole fraction 

I 

II 

III 

Methane 0.40 

N-Butane 0. I0 
N-Pentane 0.10 
N-Hexane 0.10 

N-Decane 0.06 
N-Undecane 0.06 
N-Dodecane 0.06 
N-Tridecane 0.06 
N-Tetradecane 0.06 
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Fig. 1. Illustration of the accuracy of the variational 
approximation for fluid A. 

result) in the molar liquid fraction at various pressures and temperatures. 
The deviation at 300 K is not shown: it is less than 0.0005 over the entire 
pressure range from 1000 to 8000 kPa. 

Variation in system composition has also been considered. Illustrative 
results are given in Fig. 2. The deviation in liquid fraction is shown as a 
function of pressure, for various mixtures of fluid A and methane. The sym- 
bol x denotes the number  of moles of methane that have been added to 
1 mol of fluid A. 

The approximation is shown to be accurate over a wide range of 
pressures and compositions; it is more sensitive to temperature variations, 
however. 

Application of the approximation as an acceleration method has been 
tested in a realistic case, a 28-component representation of an actual reser- 
voir fluid (Table II). Figure 3 shows the liquid fraction as a function of 
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Fig. 2. Illustration of the accuracy of the variational approximation for fluid A. 
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pressure, at the reservoir temperature of 394 K, for various mixtures of this 
fluid B and nitrogen. To illustrate the accuracy of the approximation in 
this case, Fig. 3 also shows approximation results based on calibration at 
15,000 kPa, 394 K, and x = 0.50. Again, for this realistic fluid mixture the 
approximation is shown to be accurate over a wide range of conditions. 

The amount of computing time that is saved by using our method 
depends on whether approximated results are acceptable if conditions do 
not differ too much from the last calibration conditions. Demanding exact 
answers in all cases {i.e., setting A~ . . . .  A P  . . . .  and ATma x [cf. Eq. (22)] 
equal to zero}, generation of the data for Fig. 3 which involved 61 VLE 
calculations--took 74% of the computing time required by the original 
algorithm. For individual VLE calculations this percentage ranged from 35 
to 90, depending on the change in conditions between successive 
calculations. 

The approximate calculation typically takes 10-15% of the time of an 
exact calculation. Thus it is very advantageous to forego the final iteration 
procedure whenever the approximation results are expected to be of accep- 
table accuracy. Particularly in reservoir simulation a large number of VLE 
calculations are performed within a relatively narrow range of conditions; 
in such circumstances most calculations will be performed in 
approximation only, and accordingly execution time will be reduced sub- 
stantially. 
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Table II. Fluid B Composition and Component Grouping 

417 

Group Component Mole fraction 

I Nitrogen 0.0 t08 

II Methane 0.2268 

III Carbon dioxide 0.0068 
Ethane 0.0898 
Propane 0.0928 
/-Butane 0.0127 
N-Butane 0.0452 
/-Pentane 0.0139 
N-Pentane 0.0249 
N-Hexane 0.0304 

IV N-Heptane 0.0200 
N-Octane 0.0100 
N-Nonane 0.0100 
N-Decane 0.0100 
N-Undecane 0.0100 
N-Dodecane 0.0200 
N-Tridecane 0.0200 
N-Tetradecane 0.0200 

V N-Pentadecane 0.0300 
N-Hexadecane 0.0300 
N-Heptadecane 0.0250 
N-Octadecane 0.0200 
Eicosane 0.0200 
N-C24 0.0200 
N-C28 0.0159 
Naphthalene 0.0200 
Biphenyl 0.0500 
Terphenyl 0.0950 

5. C O N C L U S I O N  

We have presented a method for approximate vapor/liquid 
equilibrium calculations with an equation of state. The method reduces the 
number of independent variables by introducing additional constraints into 
the free energy minimization problem. It is based on the assumption that a 
complex fluid mixture may be viewed as consisting of a small number of 
weakly polydisperse components. 

The approximation method may be applied as a means of accelerating 
sequences of vapor/liquid equilibrium calculations, such as are encountered 
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PHASE SPLIT ISOTHERMS AT 394 K FOR VARIOUS MIXTURES OF 
MOLE OF FLUID B AND X MOLES OF NITROGEN 

0.t9 ssl ISi/ 

X= 0.0 ~ 

" COND 

tD _. 

I ~ "  - - - -  APPROXIMATION RESULTS 

~  ' ' 4o~oo  ' ~o~oo 
PRESSURE, kPo 

Fig. 3. Illustration of the accuracy of the variational approximation for 
fluid B. 

in numerical reservoir simulation. Computing time for an (exact!) 
equilibrium determination may be reduced by a factor of up to three, in 
realistic cases. 

An interesting question is how to identify in a complex fluid mixture 
groups of components that may adequately be described as one weakly 
polydisperse component each. This is currently being investigated. 
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